MAPK14 Knockout HAP1 Cell Pool

热销产品

undefined
undefined
+
  • undefined
  • undefined

编号 :

LM01010112062

产品编号: LM01010112062

市场价

销售价格:  ¥ 8499

数量
-
+

库存剩余

联系我们订购

抗体定制服务咨询

隐藏域元素占位

  • 产品描述
  • 细胞复苏
  • 细胞传代
  • 细胞冻存
  • 抗体验证结果
    • 品牌: ELEM粒曼
    • 商品名称: MAPK14 Knockout HAP1 Cell Pool
    • 商品编号: LM01010112062
    • Gene Symbol: MAPK14 CSBP CSBP1 CSBP2 CSPB1 MXI2 SAPK2A
    • Ensembl ID: ENSG00000112062
    • Uniprot ID: Q16539
    • 宿主细胞 / 类型: HAP1/慢性粒细胞白血病
    • NCBI Gene ID: 1432
    • 规格: 1×10^6 cells/ 冻存管
    • 筛选标记: N/A
    • 生长特性: 贴壁细胞,上皮细胞样
    • 培养条件: 37℃,5% CO2 的培养箱,1/3 到 1/5 传代
    • 倍增时间: ~16 hours
    • 生长培养基: IMDM+10% FBS+1% P/S
    • 参考换液频率: 2~3次/周
    • 支原体检测结果: 阴性
    • 敲除效率(Sanger测序): >70%
    • 蛋白质组验证结果: 已完成蛋白水平验证
    • 抗体货号: 添加中
    • 目标基因介绍: (Microbial infection) Activated by phosphorylation by M.tuberculosis EsxA in T-cells leading to inhibition of IFN-gamma production; phosphorylation is apparent within 15 minute and is inhibited by kinase-specific inhibitors SB203580 and siRNA (PubMed:21586573).||Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK14 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as proinflammatory cytokines or physical stress leading to direct activation of transcription factors. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. Some of the targets are downstream kinases which are activated through phosphorylation and further phosphorylate additional targets. RPS6KA5/MSK1 and RPS6KA4/MSK2 can directly phosphorylate and activate transcription factors such as CREB1, ATF1, the NF-kappa-B isoform RELA/NFKB3, STAT1 and STAT3, but can also phosphorylate histone H3 and the nucleosomal protein HMGN1. RPS6KA5/MSK1 and RPS6KA4/MSK2 play important roles in the rapid induction of immediate-early genes in response to stress or mitogenic stimuli, either by inducing chromatin remodeling or by recruiting the transcription machinery. On the other hand, two other kinase targets, MAPKAPK2/MK2 and MAPKAPK3/MK3, participate in the control of gene expression mostly at the post-transcriptional level, by phosphorylating ZFP36 (tristetraprolin) and ELAVL1, and by regulating EEF2K, which is important for the elongation of mRNA during translation. MKNK1/MNK1 and MKNK2/MNK2, two other kinases activated by p38 MAPKs, regulate protein synthesis by phosphorylating the initiation factor EIF4E2. MAPK14 interacts also with casein kinase II, leading to its activation through autophosphorylation and further phosphorylation of TP53/p53. In the cytoplasm, the p38 MAPK pathway is an important regulator of protein turnover. For example, CFLAR is an inhibitor of TNF-induced apoptosis whose proteasome-mediated degradation is regulated by p38 MAPK phosphorylation. In a similar way, MAPK14 phosphorylates the ubiquitin ligase SIAH2, regulating its activity towards EGLN3. MAPK14 may also inhibit the lysosomal degradation pathway of autophagy by interfering with the intracellular trafficking of the transmembrane protein ATG9. Another function of MAPK14 is to regulate the endocytosis of membrane receptors by different mechanisms that impinge on the small GTPase RAB5A. In addition, clathrin-mediated EGFR internalization induced by inflammatory cytokines and UV irradiation depends on MAPK14-mediated phosphorylation of EGFR itself as well as of RAB5A effectors. Ectodomain shedding of transmembrane proteins is regulated by p38 MAPKs as well. In response to inflammatory stimuli, p38 MAPKs phosphorylate the membrane-associated metalloprotease ADAM17. Such phosphorylation is required for ADAM17-mediated ectodomain shedding of TGF-alpha family ligands, which results in the activation of EGFR signaling and cell proliferation. Another p38 MAPK substrate is FGFR1. FGFR1 can be translocated from the extracellular space into the cytosol and nucleus of target cells, and regulates processes such as rRNA synthesis and cell growth. FGFR1 translocation requires p38 MAPK activation. In the nucleus, many transcription factors are phosphorylated and activated by p38 MAPKs in response to different stimuli. Classical examples include ATF1, ATF2, ATF6, ELK1, PTPRH, DDIT3, TP53/p53 and MEF2C and MEF2A.
    • 细胞开发路径: 采用CRISPR-RNP方法生成稳定KO Cell Pool;Sanger 测序结果显示KO Cell Pool敲除效率>70%
    • 应用: 高敲除效率的基因敲除细胞池(KO Cell Pool),特别适用于初步功能分析、复杂疾病模型的开发、精准药物筛选以及广泛的基因发现研究。KO pool能够无需繁琐的单克隆挑选过程,直接应用于多种类型的测定和分析,大幅提升实验效率。
    关键词:
    • MAPK14 CSBP CSBP1 CSBP2 CSPB1 MXI2 SAPK2A
  • 01.  在 37℃水浴中预热完全培养基。
    02.  将冻存管在 37℃水浴中解冻 1-2 分钟。
    03.  将冻存管转移到生物安全柜中,并用 70% 乙醇擦拭表面。
    04.  拧开冻存管管盖,将细胞悬液轻轻转移到含有 9mL 完全培养基的无菌离心管中。
    05.  在室温下以 125g 离心 5-7 分钟,弃上清。
    06.  用 5mL 的完整培养基重悬细胞沉淀,将细胞悬液转移到 T25 培养瓶中。
    07.  将细胞转移到 37℃,5% CO2 的培养箱中培养。
    08.  参考传代比例:1/3 到 1/5 传代,2-3 天长满。

  • 01.  待培养瓶中细胞汇合度至 80%-90% 以上,可进行细胞传代。
    02.  将培养基、PBS、胰酶(0.25%Trypsin_EDTA Gibco 25200-056) 等从 4℃冰箱中拿出, 置于 37℃水浴中温度接近 37℃时取出并在瓶子表面喷洒 75% 酒精后置于生物安全柜中。

    03.  从培养箱中取出待传代的培养瓶,瓶身喷洒 75% 酒精后置于生物安全柜中。
    04.  为避免冲散细胞,沿培养瓶上壁 PBS 润洗细胞,清洗细胞后弃去,T25 加 2mL。
    05.  加入对应体积的胰酶(T75 加 1.5mL, T25 加 0.5mL)  ,并轻轻晃动瓶身使胰酶平铺满细胞 底部。可根据实际情况适当增加或减少用量。约 1-2min 后大部分细胞脱落时,加入对应体积的完全培养基终止消化,并用 5mL 移液管轻轻吹打至细胞全部脱落。
    06.  将细胞悬液转移至 15mL 离心管,悬液 300g 离心 5min,弃上清。
    07.  移取 5mL 完全培养基重悬细胞,按需求调整接种比例,并补充培养瓶中完全培养基,T75 加至 13-15mL,T25 加至 5mL,加 1% 双抗。
    08.  盖上瓶盖拧紧后轻轻晃动瓶身,使细胞混合均匀后置于 37℃,5% CO2 培养箱中。

  • 01.  准备冻存液,并提前预冷。
    02.  确保待冻存的细胞满足冻存要求,用显微镜检查以下状态:健康的外观及形态特征、所处生 长周期(对数晚期)、无污染或衰退迹象。
    03.  对细胞进行消化及离心处理(具体步骤参考传代培养流程)
    04.  按照每管 1mL 的量添加冻存液重悬细胞,吹打均匀后分装至冻存管。
    05.  将细胞放在程序降温盒中,在 -80℃冰箱中冷冻。
    06.  后续将细胞转移到液氮罐中,以便长期储存。

  • 抗体验证中

产品类型: 基因敲除细胞池(蛋白水平已验证)

细胞系信息

Gene Symbol

MAPK14 CSBP CSBP1 CSBP2 CSPB1 MXI2 SAPK2A

NCBI Gene ID

1432

Ensembl ID

ENSG00000112062

Uniprot ID

Q16539

筛选标记

N/A

宿主细胞 / 类型

HAP1/慢性粒细胞白血病

规格

1×10^6 cells/ 冻存管

生长培养基

IMDM+10% FBS+1% P/S

生长特性

贴壁细胞,上皮细胞样

培养条件

37℃,5% CO2 的培养箱,1/3 到 1/5 传代

倍增时间

~16 hours

参考换液频率

2~3次/周

支原体检测结果

阴性

敲除验证

敲除效率(Sanger测序)

>70%

蛋白质组验证结果

已完成蛋白水平验证

抗体货号

添加中

抗体验证结果

抗体验证中

细胞系说明

目标基因介绍

(Microbial infection) Activated by phosphorylation by M.tuberculosis EsxA in T-cells leading to inhibition of IFN-gamma production; phosphorylation is apparent within 15 minute and is inhibited by kinase-specific inhibitors SB203580 and siRNA (PubMed:21586573).||Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK14 is one of the four p38 MAPKs which play an important role in the cascades of cellular responses evoked by extracellular stimuli such as proinflammatory cytokines or physical stress leading to direct activation of transcription factors. Accordingly, p38 MAPKs phosphorylate a broad range of proteins and it has been estimated that they may have approximately 200 to 300 substrates each. Some of the targets are downstream kinases which are activated through phosphorylation and further phosphorylate additional targets. RPS6KA5/MSK1 and RPS6KA4/MSK2 can directly phosphorylate and activate transcription factors such as CREB1, ATF1, the NF-kappa-B isoform RELA/NFKB3, STAT1 and STAT3, but can also phosphorylate histone H3 and the nucleosomal protein HMGN1. RPS6KA5/MSK1 and RPS6KA4/MSK2 play important roles in the rapid induction of immediate-early genes in response to stress or mitogenic stimuli, either by inducing chromatin remodeling or by recruiting the transcription machinery. On the other hand, two other kinase targets, MAPKAPK2/MK2 and MAPKAPK3/MK3, participate in the control of gene expression mostly at the post-transcriptional level, by phosphorylating ZFP36 (tristetraprolin) and ELAVL1, and by regulating EEF2K, which is important for the elongation of mRNA during translation. MKNK1/MNK1 and MKNK2/MNK2, two other kinases activated by p38 MAPKs, regulate protein synthesis by phosphorylating the initiation factor EIF4E2. MAPK14 interacts also with casein kinase II, leading to its activation through autophosphorylation and further phosphorylation of TP53/p53. In the cytoplasm, the p38 MAPK pathway is an important regulator of protein turnover. For example, CFLAR is an inhibitor of TNF-induced apoptosis whose proteasome-mediated degradation is regulated by p38 MAPK phosphorylation. In a similar way, MAPK14 phosphorylates the ubiquitin ligase SIAH2, regulating its activity towards EGLN3. MAPK14 may also inhibit the lysosomal degradation pathway of autophagy by interfering with the intracellular trafficking of the transmembrane protein ATG9. Another function of MAPK14 is to regulate the endocytosis of membrane receptors by different mechanisms that impinge on the small GTPase RAB5A. In addition, clathrin-mediated EGFR internalization induced by inflammatory cytokines and UV irradiation depends on MAPK14-mediated phosphorylation of EGFR itself as well as of RAB5A effectors. Ectodomain shedding of transmembrane proteins is regulated by p38 MAPKs as well. In response to inflammatory stimuli, p38 MAPKs phosphorylate the membrane-associated metalloprotease ADAM17. Such phosphorylation is required for ADAM17-mediated ectodomain shedding of TGF-alpha family ligands, which results in the activation of EGFR signaling and cell proliferation. Another p38 MAPK substrate is FGFR1. FGFR1 can be translocated from the extracellular space into the cytosol and nucleus of target cells, and regulates processes such as rRNA synthesis and cell growth. FGFR1 translocation requires p38 MAPK activation. In the nucleus, many transcription factors are phosphorylated and activated by p38 MAPKs in response to different stimuli. Classical examples include ATF1, ATF2, ATF6, ELK1, PTPRH, DDIT3, TP53/p53 and MEF2C and MEF2A.

细胞开发路径

采用CRISPR-RNP方法生成稳定KO Cell Pool;Sanger 测序结果显示KO Cell Pool敲除效率>70%

应用

高敲除效率的基因敲除细胞池(KO Cell Pool),特别适用于初步功能分析、复杂疾病模型的开发、精准药物筛选以及广泛的基因发现研究。KO pool能够无需繁琐的单克隆挑选过程,直接应用于多种类型的测定和分析,大幅提升实验效率。

细胞培养说明

细胞复苏

01.  在 37℃水浴中预热完全培养基。
02.  将冻存管在 37℃水浴中解冻 1-2 分钟。
03.  将冻存管转移到生物安全柜中,并用 70% 乙醇擦拭表面。
04.  拧开冻存管管盖,将细胞悬液轻轻转移到含有 9mL 完全培养基的无菌离心管中。
05.  在室温下以 125g 离心 5-7 分钟,弃上清。
06.  用 5mL 的完整培养基重悬细胞沉淀,将细胞悬液转移到 T25 培养瓶中。
07.  将细胞转移到 37℃,5% CO2 的培养箱中培养。
08.  参考传代比例:1/3 到 1/5 传代,2-3 天长满。

细胞传代

01.  待培养瓶中细胞汇合度至 80%-90% 以上,可进行细胞传代。
02.  将培养基、PBS、胰酶(0.25%Trypsin_EDTA Gibco 25200-056) 等从 4℃冰箱中拿出, 置于 37℃水浴中温度接近 37℃时取出并在瓶子表面喷洒 75% 酒精后置于生物安全柜中。

03.  从培养箱中取出待传代的培养瓶,瓶身喷洒 75% 酒精后置于生物安全柜中。
04.  为避免冲散细胞,沿培养瓶上壁 PBS 润洗细胞,清洗细胞后弃去,T25 加 2mL。
05.  加入对应体积的胰酶(T75 加 1.5mL, T25 加 0.5mL)  ,并轻轻晃动瓶身使胰酶平铺满细胞 底部。可根据实际情况适当增加或减少用量。约 1-2min 后大部分细胞脱落时,加入对应体积的完全培养基终止消化,并用 5mL 移液管轻轻吹打至细胞全部脱落。
06.  将细胞悬液转移至 15mL 离心管,悬液 300g 离心 5min,弃上清。
07.  移取 5mL 完全培养基重悬细胞,按需求调整接种比例,并补充培养瓶中完全培养基,T75 加至 13-15mL,T25 加至 5mL,加 1% 双抗。
08.  盖上瓶盖拧紧后轻轻晃动瓶身,使细胞混合均匀后置于 37℃,5% CO2 培养箱中。

细胞冻存

01.  准备冻存液,并提前预冷。
02.  确保待冻存的细胞满足冻存要求,用显微镜检查以下状态:健康的外观及形态特征、所处生 长周期(对数晚期)、无污染或衰退迹象。
03.  对细胞进行消化及离心处理(具体步骤参考传代培养流程)
04.  按照每管 1mL 的量添加冻存液重悬细胞,吹打均匀后分装至冻存管。
05.  将细胞放在程序降温盒中,在 -80℃冰箱中冷冻。
06.  后续将细胞转移到液氮罐中,以便长期储存。